博客
关于我
概率统计_最大似然估计直观解释
阅读量:660 次
发布时间:2019-03-15

本文共 518 字,大约阅读时间需要 1 分钟。

概率统计_最大似然估计

概率统计是数据科学和统计学中的核心领域之一,它关注于通过分析数据来推断随机事件的发生规律。其中,最大似然估计是一项经典的统计方法,广泛应用于参数估计和模型选择中。

最大似然估计的基本思想是,在给定观测数据的情况下,寻找一个参数值,使得观察到的数据出现的概率最大化。这个估计方法的核心在于最大化似然函数,即找到使得样本数据出现的概率最大的参数值。与其他估计方法如矩估计不同,最大似然估计具有较强的鲁棒性,且在很多应用中表现优于其他方法。

在实际应用中,最大似然估计常常用于参数估计。例如,在一元二次模型中,假设有n个观测值:y1,y2,...,yn,随机误差服从正态分布N(θ,σ²),最优参数估计量可以通过最大似然估计得到。最大似然估计的结果通常为无偏估计量,其协方差矩阵也可以通过数组方法计算。

此外,最大似然估计还具有良好的通用性,可以应用于多种统计模型,如泊松回归、丢番图回归和指数回归等。在这些模型中,最大似然估计通过对观测数据构建似然函数,并对其求导数,找到极值点来实现参数估计。

总的来说,概率统计中的最大似然估计是一种强大的工具,它通过最大化数据的似然性来推断参数,广泛应用于统计模型的建立与应用。

转载地址:http://qwrmz.baihongyu.com/

你可能感兴趣的文章
node.js安装方法
查看>>
Node.js官网无法正常访问时安装NodeJS的方法
查看>>
node.js模块、包
查看>>
node.js的express框架用法(一)
查看>>
Node.js的交互式解释器(REPL)
查看>>
Node.js的循环与异步问题
查看>>
Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
查看>>
nodejs + socket.io 同时使用http 和 https
查看>>
NodeJS @kubernetes/client-node连接到kubernetes集群的方法
查看>>
NodeJS API简介
查看>>
Nodejs express 获取url参数,post参数的三种方式
查看>>
nodejs http小爬虫
查看>>
nodejs libararies
查看>>
nodejs npm常用命令
查看>>
nodejs npm常用命令
查看>>
Nodejs process.nextTick() 使用详解
查看>>
NodeJS yarn 或 npm如何切换淘宝或国外镜像源
查看>>
nodejs 中间件理解
查看>>
nodejs 创建HTTP服务器详解
查看>>
nodejs 发起 GET 请求示例和 POST 请求示例
查看>>